

Yatheesh M. Babu

General Manager

Power Sector- Technical Services, Noida

1st November, 2019

Presentation Agenda

FLEXIBILISATION : THE CONCEPT

☆ What? Why? How?

FLEXIBILISATION & BHEL

🛠 🛛 Case Study

MITIGATING THE EFFECTS

🛠 The Way Forward

FLEXIBILISATION

WHAT ? WHY ? HOW ?

3 POWER SECTOR – TECHNICAL SERVICES

The Rise of Renewable Energy

THE RISE OF RENEWABLE ENERGY GENERATION

- 105 GW renewable generation addition by 2022. Thereby taking the figure to 175 GW
- The share will increase from current 20% share to 37% share in 2022 and further 44% share is target by 2027.
- Solar & wind will have a contribution of 21% & 12.5% respectively of the total generation capacity in 2022

S. No.	Sector	Installed Capacity (in GW)	
		2017-18	2021-22
1.	Coal + Lignite	197	217
2.	Hydro	45	51
3.	Gas	25	26
4.	Nuclear	6.7	10
5.	Solar	22	100
б.	Wind	34	60
7.	Biomass	9	10
8.	Small Hydro	4	5
	Total	344	479

Source: CEA

Flexiblisation: The Need

LIMITATIONS WITH RENEWABLE ENERGY SOURCE

- Intermittent and variable
- Season and Weather dependent
- Location and time of day dependent
- Does not match the load demand curve
 - Wind generation is unpredictable
- Solar generation is predictable but non controllable

FOR BALANCING THE GRID (LOAD GENERATION BALANCE)

- Off-peak and peak demand variation
- Sudden increase of load in the grid
- Loss of grid connected load
- Loss of generation in the system
- Addition or reduction of RE generation

Maximum Solar & Wind Generation (Predicted on 25.06.2021)

Flexibilisation: The Expectations

Higher ramping rates during loading and unloading

Faster Startup

Lower stable minimum load

THE PRACTICAL OPERATIONAL REGIME IN FLEXIBLE OPERATION WILL BE AS:

- Frequent & increased load cycling
- Fast load ramp up and ramp down
- Low load operation
- Two shift operation
- Frequent and increased number of unit startup & shutdown cycles

POWER SECTOR – TECHNICAL SERVICES

Effect of Load Cycling

DEPENDING ON THE OPERATIONAL CONDITIONS, TURBINE & BOILER COMPONENTS ARE EXPOSED TO VARIOUS DAMAGE MECHANISMS:

COMPONENTS

- HP/IP rotors
- Blades
- Casings
- Valves
- Header
- Y-Piece
- T-piece
- MS/HRH Pipelines
- Pressure parts

CREEP

Slow and continuous deformation of materials due to high temperature exposure even at constant load

THERMAL FATIGUE

Failure of metal when subjected to repeated or fluctuating stresses due to thermal cycling of components

POWER SECTOR - TECHNICAL SERVICES

FLEXIBILISATION & BHEL

THE JOURNEY

POWER SECTOR - TECHNICAL SERVICES

Flexibilisation: Journey so far

BHEL's FORAY INTO FLEXIBLISATION INITIATIVE

THE CASE STUDY

Part of IGEF / EEC

- Working in close coordination with agencies, such as CEA, for implementing flexiblisation in Indian power sector
- Closely working with our customer to understand how they perceive flexiblisation & hence their expectations
- Building flexiblisiation portfolio to meet customer's & market's requirements

- Capability of BHEL sets for flexible operation (some operational limitations & added life consumption)
- Dedicated solutions for enhancing plant's reliability & availability
- Confidence to statuary authorities
- Avoid furore that flexibility will jeopardize the existing plants
- Identify required solutions to achieve current/ future level of flexibility requirement

Flexibilisation: Pilot Study

LOAD RAMPING : STUDY

Load ramping tests have been carried out at:

- 1% ramp up & down
- 2% ramp up & down
- 3% ramp up & down
- Load range of 55% to 100% TMCR
- Unit operation in CMC with slight manual intervention
- Load change has been done both in coupled blocks of 50-125 MW & in single block of 225 MW.
- Results have been quite encouraging and as per our expectations

LOAD RAMPING : CHALLANGES

Unit stability - furnace stability - flame stability excess air flow Unit response SHO & RHO temperature deviations Combination & number of mills in service BFP – single stream/ double stream operation AFG path – single stream/ double stream operation FG temperature deviations Emission control equipment (currently ESP only) State of the plant – 0 & M practices **Euclidear** Euclidear Eucl

POWER SECTOR - TECHNICAL SERVICES

Pilot Study: Load Variation

CASE 2

11 POWER SECTOR – TECHNICAL SERVICES

Pilot Study: SHO Temperature Variation

CASE 2

Pilot Study: RHO Temperature Variation

CASE 2

13 POWER SECTOR – TECHNICAL SERVICES

Pilot Study: Variation in Drum Parameters

CASE 1

CASE 2

14

POWER SECTOR - TECHNICAL SERVICES

FLEXIBILISATION

MITIGATING THE EFFECTS

Cyclic Loading: Mitigating the Effects

- Customized operating guidelines Thermo-mechanical assessment Condition monitoring systems/ Sensors Controls & Automation Package
 - Model based / Adaptive Control Systems
 - Fuel Firing System Optimization
- Plant Optimizer
- Advisory Services for Flexible Operation
- Improved design of Boiler and Turbine to allow faster ramping and increased number of cycles

Customized Operating Guidelines

Customized operating guidelines Thermo-mechanical assessment Condition monitoring systems/ Sensors Controls & Automation Package Model based / Adaptive Control Systems Advisory Services for Flexible Operation

CUSTOMIZED OPERATING GUIDELINES

Low load operation

Thermo-mechanical Assessment

Customized operating guidelines
Thermo-mechanical assessment
Condition monitoring systems/ Sensors
Controls & Automation Package
Model based / Adaptive Control Systems
Advisory Services for Flexible Operation

THERMO-MECHANICAL ASSESSMENT

Detailed thermo-mechanical assessment of unit

Response and capability for flexible operation with a set of proposed fuel

Condition Monitoring Systems

Customized operating guidelines
Thermo-mechanical assessment
Condition monitoring systems/ Sensors
Controls & Automation Package
Model based / Adaptive Control Systems
Advisory Services for Flexible Operation

CONDITION MONITORING SYSTEMS

Dedicated Packages for stress monitoring in:

Boiler

Turbine

Generator

Controls & Automation

Customized operating guidelines
Thermo-mechanical assessment
Condition monitoring systems/ Sensors
Controls & Automation Package
Model based / Adaptive Control Systems
Advisory Services for Flexible Operation

CONTROLS & AUTOMATION PACKAGE

- Fine tuning of Existing Controls
- Customised Control Packages for various sub-controls
- Complete Control Package
- Upgradation of older control systems either through complete R&M or additional packages

Model based / Adaptive Predictive Control (MPC/APC)

 Customized operating guidelines
Thermo-mechanical assessment
Condition monitoring systems/ Sensors
Controls & Automation Package
Model based / Adaptive Control Systems
Advisory Services for Flexible Operation

Existing PID Controller Philosophy

Model based / Adaptive Predictive Control (MPC/APC)

ADVANCED TYPE CONTROLLER PRIMARILY FOR STEAM TEMPERATURE CONTROL FOR BOTH SH & RH:

- Consists of predictor & controller
- Predictor creates models based on past operating data and then predicts the parameters in future course
- Based on the prediction, the controller regulates the spray control valves.
- Continuous communication between MPC & DCS.

Automatic updating of models.

Advisory Services

Customized operating guidelines
Thermo-mechanical assessment
Condition monitoring systems/ Sensors
Controls & Automation Package
Model based / Adaptive Control Systems
Advisory Services for Flexible Operation

ADVISORY SERVICES FOR FLEXIBLE OPERATION

- Replacement of fatigued/ worn-out components
- Shorter inspection period
- Customized O&M guidelines
- Customized maintenance schedules

THANK YOU

YATHEESH M. BABU

General Manager Power Sector-Technical Services ymbabu@bhel.in